Piracetam: a review of pharmacological
properties and clinical uses

by
Winblad B.
Karolinska Institutet, Neurotec,
Huddinge, University Hospital B 84,
S-14186 Stockholm, Sweden.
bengt.winblad@neurotec.ki.se.
CNS Drug Rev. 2005 Summer;11(2):169-82.


ABSTRACT

Piracetam, a derivative of the neurotransmitter gamma-aminobutyric acid (GABA), has a variety of physiological effects that may result, at least in part, from the restoration of cell membrane fluidity. At a neuronal level, piracetam modulates neurotransmission in a range of transmitter systems (including cholinergic and glutamatergic), has neuroprotective and anticonvulsant properties, and improves neuroplasticity. At a vascular level, it appears to reduce erythrocyte adhesion to vascular endothelium, hinder vasospasm, and facilitate microcirculation. This diverse range of physiological effects is consistent with its use in a range of clinical indications. Its efficacy is documented in cognitive disorders and dementia, vertigo, cortical myoclonus, dyslexia, and sickle cell anemia. While high doses are sometimes necessary, piracetam is well tolerated.

Piracetam
Idebenone
Vinpocetine
Vasopressin
Desmopressin
Meclofenoxate
New brain cells
Centrophenoxine
The memory switch?
Dumb-drug euphoria
Piracetam (Nootropil)
Pyrrolidone derivatives
Growing new brain cells
Piracetam and dopamine
Piracetam and working memory
Piracetam and the mitochondria



Refs
and further reading

HOME
HedWeb
Nootropics
cocaine.wiki
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family