Role of corticotropin-releasing factor, vasopressin and the autonomic nervous system in learning and memory
by
Croiset G, Nijsen MJ, Kamphuis PJ.
Rudolf Magnus Institute for Neurosciences,
Universiteitsweg 100, 3584 CG,
Utrecht, The Netherlands.
g.croiset@med.uu.nl
Eur J Pharmacol2000 Sep 29;405(1-3):225-34


ABSTRACT

Learning and memory are essential requirements for every living organism in order to cope with environmental demands, which enables it to adapt to changes in the conditions of life. Research on the effects of hormones on memory has focused on hormones such as adrenocorticotropic hormone (ACTH), glucocorticoids, vasopressin, oxytocin, epinephrine, corticotropin-releasing factor (CRF) that are released into the blood and brain following arousing or stressful experiences.Most of the information have been derived from studies on conditioned behavior, in particular, avoidance behavior in rats. In these tasks, an aversive situation was used as a stimulus for learning. Aversive stimuli are associated with the release of stress hormones and neuropeptides. Many factors play a role in different aspects of learning and memory processes. Neuropeptides not only affect attention, motivation, concentration and arousal or vigilance, but also anxiety and fear. In this way, they participate in learning and memory processes. Furthermore, neuropeptides such as CRF and vasopressin modulate the release of stress hormones such as epinephrine. In turn, systemic catecholamines enhance memory consolidation. CRF and vasopressin are colocalized in neurons from the nucleus paraventricularis, which project to nuclei in the brainstem involved in autonomic regulation. The objective of this paper is to discuss the role of CRF, vasopressin, and the autonomic nervous system (ANS) in learning and memory processes. Both CRF and vasopressin have effects in the same direction on behavior, learning and memory processes and stress responses (release of catecholamines and ACTH). These neuropeptides may act synergistically or in a concerted action aimed to learn to adapt to environmental demands.

Vasopressin
New brain cells
The memory switch?
Dumb-drug euphoria
Growing new brain cells
Coffee, caffeine and Parkinson's disease
Vasopressin, memory and the hippocampus
Vasopressin and memory in healthy humans




Refs
and further reading

HOME
HedWeb
Nootropics
cocaine.wiki
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family