Vasopressin in the mammalian brain:
the neurobiology of a mnemonic peptide

Diaz Brinton R.
Department of Molecular Pharmacology and Toxicology,
USC Pharmaceutical Sciences Center,
Los Angeles, USA.
Prog Brain Res 1998;119:177-99


We have sought to understand the mechanisms by which VP can enhance memory function and in the process determine whether VP fulfills the requirements for neurotransmitter status. The latter goal of proving the neurotransmitter status of VP has been achieved through our findings and the results of many of the scientists contributing to this volume. With respect to elucidating the mechanisms by which VP can enhance memory function, results of our work have shown that VP and its receptors are present in brain regions known to be involved in memory function, that release of VP is inhibited by a factor that inhibits memory function, that VP can significantly enhance the morphological complexity and outgrowth of neurons involved in memory function, that second messenger systems held to be involved in learning and memory, cyclic AMP and calcium signaling pathways, are potentiated and activated by VP, that electrophysiological models of memory function are induced by VP, and that when animals remember a learned association VP content in brain increases over time during the active phase of remembering. Collectively, these studies have taught us a great deal about the sites and mechanisms of VP action and have led us to pursue avenues of investigation that we would not have imagined 15 years ago when we began this work. We stand on the threshold of a new era in our research as we begin our studies of the role VP and its receptors play in the cerebral cortex. Thus far, results of these studies are quite exciting and promise to yield fascinating insights into the complexities of VP action in the most highly developed region of the mammalian brain, the cerebral cortex, the site of abstract reasoning, judgment, complex analysis and the repository of those memories that last a life-time.

VP metabolites
New brain cells
The memory switch?
Dumb-drug euphoria
Growing new brain cells
CRF, vasopressin and memory
Vasopressin, memory and the hippocampus
Vasopressin and memory in healthy humans

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family